Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2021

Effect of intense geomagnetic storms on low-latitude TEC during the ascending phase of the solar cycle 24

The results presented in this paper are obtained from low-latitude ionospheric total electron content (TEC) variation during the chosen geomagnetic storm events happening during the solar cycle 24. We include the four intense geomagnetic storms that occurred on 26 September 2011, 15 July 2012, 19 February 2014 and 20 December 2015, depending upon the availability of TEC data. For this, we have used the TEC data from low-latitude station Varanasi (geographic latitude 25°, 16′N, geographic longitude 82°, 59′E and geomagnetic latitude 16°, 24′N) and an equatorial station Bengaluru (geographic latitude 13°, 02′N, geographic longitude 77°, 34′E and geomagnetic latitude 04°, 68′N). The storm-induced TEC changes at chosen stations have been discussed in terms of local time, storm wind effect, neutral wind, composition changes and variation in the dawn–dusk component of the interplanetary electric field (IEF Ey).

Singh, Abha; Rathore, Vishnu; Kumar, Sanjay; Rao, S.; Singh, Sudesh; Singh, A.;

Published by: Journal of Astrophysics and Astronomy      Published on: aug

YEAR: 2021     DOI: 10.1007/s12036-021-09774-8

geomagnetic storm; Global positioning system; low latitude; total electron contents

2008

Prestorm enhancements in NmF2 and total electron content at low latitudes

The enhancement of electron concentrations in the ionosphere before geomagnetic storms is one of the open questions. Using ionosonde observations and total electron content (TEC) from Global Positioning System (GPS) measurements along longitude 120°E, we analyzed three low latitude pre-storm enhancement events that occurred on 21 April (day 111) 2001, 29 May (day 149) 2003, and 22 September (day 265) 2001, respectively, in the Asia/Australia sector. All three events (and other two cases on 9 August 2000 and 10 May 2002) show quite similar features. The strong prestorm enhancements during these events are simultaneously presented in foF2 and TEC and enhancements have latitudinal dependence, tending to occur at low latitudes with maxima near the northern and southern equatorial ionization anomaly (EIA) crests and depletions in the equatorial region. This is quite different from what reported by Burešová and Laštovička (2007) for middle latitudes. They found no systemic latitudinal dependence in prestorm enhancements over Europe. It is argued that solar flares are not the main drivers for the enhancements, at least for low-latitude events. Main features of low-latitude prestorm enhancements do not coincide with the solar flare effects. We postulate that the vertical plasma drift or zonal electric field is a likely cause for the low-latitude prestorm enhancements. Its existence is supported by the facts of stronger EIA, the latitudinal coverage of the enhancements as well as the lift of the F layer peak height at an equatorward station during the prestorm enhancements. Moreover, the behaviors of hmF2 at low latitudes during the prestorm enhancements may possibly be explained in terms of the coupling nature of parallel and perpendicular dynamics at low latitudes (see, e.g., Behnke and Harper, 1973; Rishbeth et al., 1978).

Liu, Libo; Wan, Weixing; Zhang, Man-Lian; Zhao, Biqiang; Ning, Baiqi;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2008     DOI: https://doi.org/10.1029/2007JA012832

Ionosphere; prestorm enhancement; low latitude



  1